
Classical diffusion of a quantum particle in a noisy environment

Ariel Amir, Yoav Lahini, and Hagai B. Perets
Faculty of Physics, Weizmann Institute of Science, Rehovot 76100, Israel

�Received 5 February 2009; revised manuscript received 16 April 2009; published 22 May 2009�

We study the spreading of a quantum-mechanical wave packet in a tight-binding model with a noisy
potential and analyze the emergence of classical diffusion from the quantum dynamics due to decoherence. We
consider a finite correlation time of the noisy environment and treat the system by utilizing the separation of
fast �dephasing� and slow �diffusion� processes. We show that classical diffusive behavior emerges at long
times and we calculate analytically the dependence of the classical diffusion coefficient on the noise magnitude
and correlation time. This method provides a general solution to this problem for arbitrary conditions of the
noisy environment. The calculation can be done in any dimension, but we demonstrate it in one dimension for
clarity of representation. The results are relevant to a large variety of physical systems, from electronic
transport in solid-state physics to light transmission in optical devices, diffusion of excitons, and quantum
computation.
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I. INTRODUCTION

The dynamics of quantum particles described by the
Schrodinger equation manifests rich and exciting physics.
The dynamics of a quantum particle in homogenous or peri-
odic media is ballistic—i.e., the mean-square displacement
of a quantum particle grows linearly with time, in contrast to
the diffusive propagation of a classical particle. In many re-
alistic cases, such quantum particles are exposed to time-
dependent noisy environments and decoherence effects be-
come important. In this work we focus on the emergence of
seemingly classical diffusion from the quantum dynamics
under such conditions. Specifically, we calculate the classical
diffusion coefficient as a function of the parameters of the
noise—the magnitude and the correlation time. Our analyti-
cal calculations are found to be in excellent agreement with
numerical simulations.

To formulate the transition from quantum to classical dif-
fusion, we use a tight-binding model with a stochastic poten-
tial. The problem of the spreading of a quantum wave packet
in a dynamic time-dependent potential has received much
attention in the last three decades �1–8�. More recently this
problem was discussed in the context of quantum random
walks with decoherence and quantum computation �9,10�.
This simplified theoretical problem is of great relevance to
various experimental systems, such as particle diffusion in
molecular crystals �2�, diffusion of excitons �11�, photon
propagation in coupled waveguide lattices �12,13�, and de-
struction of Anderson localization by nonlinearity �14–16� or
time-dependent effects �17,18�. The problem of dynamics
and dephasing due to coupling to a thermal bath is also
closely related �19–21�. Early works �1� showed that unlike
the static disorder case, where Anderson localization sets in
�22�, diffusive behavior takes over at long enough times for a
tight-binding model with time-dependent disorder. Madhukar
and Post �2� extended this to the case of on-site as well as
off-diagonal disorder. Various works �3,6,23� dealt with the
problem on a continuous lattice, which can show superdiffu-
sive behavior. Heinrichs �5� showed the correspondence be-
tween discrete �tight-binding� and continuous scenarios. All

of these works assumed, for theoretical simplicity, delta-
function correlations in time �white noise�. The correspond-
ing experimental assumption for electron diffusion in mo-
lecular crystals, for example, is a temperature higher than the
Debye temperature �2�. Clearly, one would like to extend the
theoretical understanding to more realistic cases of finite cor-
relation times of the noisy environment. A first step in that
direction was undertaken by �24�, using a perturbative analy-
sis in the correlation time �. In this work we extend this to
arbitrarily large correlation times. We use a different method,
relying on the separation of fast and slow processes �dephas-
ing versus diffusion�, to derive accurate analytical solutions
for this problem.

II. MODEL AND DERIVATION

We consider the Schrodinger equation for a tight-binding
model, taking �=1. It is straightforward to generalize the
results to arbitrary dimensions, but we present them for one
dimension, for the sake of clarity. The equations governing
the process are

i
dAj

dt
= T�Aj+1 + Aj−1� + ��j,t�Aj , �1�

where Aj is the amplitude at site j and T is the nearest-
neighbor tunneling. The noise term ��j , t� is assumed to be
Gaussian and uncorrelated between different sites, and will
be characterized by a time correlation function C:

���i,t����j,t� + t�� = �ijC�t� . �2�

It is clear from the definition that C�−t�=C�t�. The typical
time of the decay of C�t� is defined as the correlation time �,
and the typical magnitude is defined as W, i.e., C�0�=W2. We
shall assume that T�W, from which follows that the dynam-
ics of the phases of Aj+1 and Aj−1 will be driven mainly by
the second term of Eq. �1�. In the lowest order approximation
A0 can be written as

Aj
0 = �Aj

0�e−i�j�t�, �3�

with � j�t�=� j�0�+�0
t ��j , t��dt�.
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Due to the random noise driving it, the phase e−i�j�t� will
also be a random variable, with a correlation function char-
acterized by a correlation time �dephasing time� ����. We
shall later show that this correlation function will be related
to the diffusion constant of the particle.

The problem of finding the correlation function, defined
as C��t− t��	�e−i�j�t�ei�j�t���, is equivalent to that encoun-
tered in the physics of nuclear magnetic resonance �NMR�,
where spins lose phase coherence due to the randomly fluc-
tuating magnetic field created by the other spins. Plugging in
the solution for � j�t�, we obtain

C���t� = �e−i�0
�t��t�dt� , �4�

where we have omitted the site index from ��j , t� since this
calculation is essentially for an independent arbitrary site.

Formally, calculating this average is similar to the deter-
mination of Debye-Waller factors �25� and yields

C���t� = lim
�t→0

exp
−
�t2

2 ��
k

�k�2�� = e−�0
�t��t−t�C�t�dt.

�5�

This is an exact result for the correlation function of the
dephasing process. A similar result was obtained in �26�, in
the context of Dicke narrowing. When �t	�, we can ap-
proximate the integral in the exponent of Eq. �5� by
�t�0


C�t�=��tW2�, where � is nonuniversal and depends on
the form of C�t�. For example, an exponential decay gives
�=1, while a correlation function decaying linearly to zero
gives �=1 /2. Therefore in this regime,

C���t� � e−�W2��t. �6�

Thus for times large compared to �, the correlation time
of the noise, the correlations of e−i� decay exponentially with
a dephasing time ���1 /W2�. This is reminiscent of the
well-known NMR phenomenon of motional narrowing �27�.

For short times, �t��, we can approximate C�t��C�0�
=W2 in the integral of Eq. �5� and obtain

C���t� � e−W2/2�t2. �7�

Remarkably, in this limit the dephasing is insensitive to the
form of the correlation function and is given by a Gaussian
with ��=�2 /W.

Let us now proceed to analyze the dynamics of the prob-
ability distribution of the particle characterized by the set of
probabilities pj = �Aj�2. It is clear that without the tunneling
term T the probabilities will remain constant, since the sites
are uncoupled. However, due to the noise term, the phase of
the amplitudes becomes a random variable, which, as we
shall now show, will lead to classical diffusion of the prob-
abilities.

From Eq. �1�, one obtains the exact relation

dPj

dt
= 2T Im�Aj

�Aj+1 + Aj
�Aj−1� . �8�

Let us take an ensemble average of Eq. �8�. To the zeroth
order approximation, given by Eq. �3�, the phases of Aj, Aj+1,
and Aj−1 are independent. This will lead, upon taking the

time average, to the incorrect result �
dPj

dt �=0. To proceed to
the next order A1 in T /W, we have to solve the following
first-order, linear differential equation:

i
Aj

1

dt
− � jAj

1 = T�Aj+1
0 + Aj−1

0 � . �9�

Defining an integration factor � j =ei�0
t
�j�t��dt�=ei�j�t�, this can

be rewritten in the form

d�Aj
1� j�

dt
= � j

T

i
�Aj+1

0 + Aj−1
0 � . �10�

Upon integration we obtain

Aj
1 = Aj

0 +
T

i� j�t�
�

0

t

� j�t���Aj+1
0 + Aj−1

0 �dt�. �11�

A similar equation holds for Aj+1 and Aj−1.
Plugging this into Eq. �8� and taking the ensemble aver-

age we obtain

� dPj

dt
� � �2T Im��Aj

1���Aj+1
1 + Aj−1

1 ��� . �12�

The phases of Aj
0, Aj+1

0 , and Aj−1
0 are independent, thus,

only four terms remain in the average. The first of these is
−2T2I, whith I defined as

I =�Re
�Aj
0���

0

t � j+1�t��
� j+1�t�

Aj
0dt��� , �13�

while the others are of similar form.
Let us evaluate I. Plugging in Aj

0= Pj�t�e−i�j�t�, and the
explicit form of � j+1�t�, we get

I =�Pj�t��
0

t

ei��j�t�−�j�t���ei��j+1�t��−�j+1�t��dt�� . �14�

Now comes the crux of the matter: the assumption
T�W, already utilized to allow a perturbative treatment in
the leading order of T, also leads to a separation of time
scales between the rate of change in the probabilities
and the dephasing. This will be checked explicitly at the
end of the calculation. Under this assumption, Pj�t� can
be taken out of the averaging. Thus I= Pj�t�Q, with
Q= ��0

t ei��j�t�−�j�t���ei��j+1�t��−�j+1�t��dt��.
Assuming t	��, we obtain that Q is a constant, related to

the dephasing correlation function C���T� found before,
through the relation Q=�0


C�
2 �t�.

Using this result Eq. �12� takes the form

dPj

dt
= 2T2Q�Pj+1 + Pj−1 − 2Pj� , �15�

where we have omitted the averaging notation. This is the
well-known diffusion master equation. This implies the
�ensemble-averaged� probabilities will indeed diffuse, with a
diffusion coefficient D=2T2Q.

Combining this with Eq. �5� for the dephasing correlation
function, we obtain our main result:
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D = 2T2�
0




C�
2 �t��dt� = 2T2�

0




e−2�0
t��t�−t�C�t�dtdt�. �16�

For the case of short correlation time �W�1, we can take
C��t�� from Eq. �6� and obtain

D =
T2

�W2�
=

2T2

�
−





C�t�dt

. �17�

This complies with the results of Ovchinnikov �1�, who
worked in the limit of �→0 �delta-function correlations of
the noise�.

The main advantage of our method, other than the clear
physical picture gained for the diffusion process, is that we
obtain explicit analytical results also for the regime of long
correlation times, as well as the crossover between the two
regimes. For long correlation times �W	1, Eq. �7� gives
C��t��. Plugging this into Eq. �16� we obtain

D =
�2T2

W
. �18�

The crossover between the two regimes �short and long noise
correlation times� is also described by Eq. �16�. The results
depend on the form of the noise correlation function C�t�.
Notice that for �W�1 Eqs. �17� and �18� give a result of the
order of T2�, which is where the two limits “match.”

We have tested the theory numerically on a finite lattice.
The procedure is as follows:

�1� We solve Eq. �1� numerically starting with a probabil-
ity distribution concentrated on a single site and with a fluc-
tuating disorder. For convenience, we take noise with lin-
early decaying correlations, i.e., C�t�=W2�1− �t� /�����− �t��,
where � is the Heaviside step function. The wave packet
spreads as is illustrated in Fig. 1.

�2� We ensemble average the probability distribution over
many realizations of the noisy environment. We find that the
standard deviation of the ensemble-averaged probability dis-
tribution grows as ��t���2Dt, as predicted by the theory.
This is demonstrated in Fig. 2. From this dependence we
extract the diffusion constant D. We find indeed that D de-
pends on the strength of the noise W as well as its correlation
time �.

Figure 3 compares the result of the simulations with the
theoretical prediction of Eq. �16�, with a linearly decaying
C�t�, as used in the simulations. Since the diffusion constant
is proportional to T2, we know from dimensional analysis
that D=T2�f�W��, where f�x� is determined from Eq. �16�.
This allows for a unified presentation of both regimes, which
are manifested as different asymptotic regimes of the func-
tion f�x�: for W��1 we know from Eq. �17� that f�x�
�1 /x2 with a nonuniversal proportionality constant, while
for W�	1 we have f�x�=�2 /x, as deduced from Eq. �18�.
Indeed, we numerically obtain scaling of this form, where
the data for different runs collapse onto a single curve when
scaled correctly. Figure 3 shows f�x� derived numerically

and compares it to the prediction of Eq. �16�. Note that there
are no fitting parameters. The excellent fit confirms the va-
lidity of the analytical approach used.

To demonstrate the generality of the results, we shall now
discuss three different experiments. The first regards diffu-
sion in molecular crystals �2,28�. The mean-square displace-
ment of an ion grows linearly with temperature. If the cou-
pling to the lattice is strong enough, we will be in the finite-
time correlations asymptotic �characterized by W�	1�.
Thus, we expect the diffusion constant to scale as 1 /W
�1 /�T. Using the Einstein relation, this implies the mobility
of particles to scale with temperature as �1 /T1.5. Indeed,
various experiments in molecular crystals �29� observed tem-
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FIG. 1. �Color online� The spread of a quantum-mechanical
wave packet in a perfectly periodic lattice �T=1, W=0� showing
ballistic spreading �a,b�, versus a noisy lattice with T=1, �=0.01,
and W=20 showing diffusive spread �c,d�. The wave function is
confined to a single lattice site at t=0. The probability distribution
of the quantum particle after some propagation is plotted on a semi-
log scale in �a� and �c� showing a ballistic profile and a diffusive
�Gaussian� profile, correspondingly.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

Time

W
id

th

Simulation results

Theory with D=2T2/W2τ

FIG. 2. �Color online� A plot of the width versus time of a
quantum-mechanical wave function spreading in a noisy potential
showing diffusive propagation. The simulation parameters are T
=1, �=0.01, and W=20. The data are averaged over 100 realiza-
tions of the disordered potential. The numerical results �open
circles� fit the theory �line�, with no fitting parameters.
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perature dependence following a power law with an expo-
nent close to −1.5. As a second example, we refer to recent
work regarding nonlinear effects in photonic lattices �13�. It
is found that the nonlinearity creates an effective noisy envi-
ronment for a probe particle and diffusion emerges as a re-
sult. Similar phenomena should occur also for Bose-Einstein
condensates, as they are described by the same equations.
Finally, a very recent experiment has observed the destruc-
tion of Anderson localization and emergence of diffusion in
lattices with time-dependent disorder �18�.

III. SUMMARY

We have considered a tight-binding model with random
on-site energies fluctuating in time with an arbitrary correla-
tion time. Using the separation of time scales between the
�slow� diffusion process and the �fast� dephasing, we man-
aged to map the complex evolution of the probabilities onto
the problem of dephasing of a single site. For a noisy envi-
ronment with short correlation time �compared to the recip-
rocal strength of the disorder, 1 /W�, the phenomenon of mo-
tional narrowing is manifested in the diffusion constant. In
the regime of long correlation time, we show that the diffu-
sion constant is inversely proportional to the strength of the
disorder. We also give a solution for the crossover regime.
Our results show excellent agreement with simulations, in-
advertently confirming previous results obtained for the
some particular cases studied in the past, but continuing
much beyond to give a general solution for the full range of
the parameter space. This includes quantum systems under
more realistic noise environments conditions, which have not
been studied before. Our results and exact solutions are ap-
plicable to various quantum systems, from diffusion of elec-
trons and excitons to photon propagation in coupled
waveguides, and to the general question of quantum random
walks with decoherence.

ACKNOWLEDGMENTS

We are grateful to the late Y. Levinson, who contributed
to this work by illuminating discussions, and pointed out the
striking resemblance to the physics of motional narrowing.
We would like to thank Y. Oreg and Y. Imry for useful dis-
cussions. A.A. acknowledges funding by the Israel Ministry
of Science and Technology via the Eshkol program. Y.L. ac-
knowledges support by the Israel Academy of Science and
Humanities via the Adams program.

�1� A. Ovchinnikov and N. Erikhman, Sov. Phys. JETP 40, 733
�1974�.

�2� A. Madhukar and W. Post, Phys. Rev. Lett. 39, 1424 �1977�.
�3� A. M. Jayannavar and N. Kumar, Phys. Rev. Lett. 48, 553

�1982�.
�4� D. Kumar, Phys. Rev. A 29, 1571 �1984�.
�5� J. Heinrichs, Z. Phys. B: Condens. Matter 57, 157 �1984�.
�6� L. Golubovic, S. Feng, and F.-A. Zeng, Phys. Rev. Lett. 67,

2115 �1991�.
�7� P. Sheng and Z.-Q. Zhang, Phys. Rev. B 48, 12609 �1993�.
�8� Y.-K. Yu, Phys. Rev. Lett. 85, 4199 �2000�.
�9� V. Kendon, Math. Structures Comput. Sci. 17, 1169 �2007�.

�10� Y. Yin, D. E. Katsanos, and S. N. Evangelou, Phys. Rev. A 77,
022302 �2008�.

�11� C. Madigan and V. Bulovic, Phys. Rev. Lett. 96, 046404
�2006�.

�12� H. B. Perets et al., Phys. Rev. Lett. 100, 170506 �2008�.
�13� Y. Silberberg et al., e-print arXiv:0812.0223.
�14� A. S. Pikovsky and D. L. Shepelyansky, Phys. Rev. Lett. 100,

094101 �2008�.
�15� G. Kopidakis, S. Komineas, S. Flach, and S. Aubry, Phys. Rev.

Lett. 100, 084103 �2008�.

�16� S. Flach, D. O. Krimer, and C. Skokos, Phys. Rev. Lett. 102,
024101 �2009�.

�17� S. Zhang, J. Park, V. Milner, and A. Z. Genack, Phys. Rev.
Lett. 101, 183901 �2008�.

�18� L. Levi, T. Schwartz, M. Segev, and S. Fishman, International
Quantum Electronics Conference 2009 �CLEO/IQEC�, paper:
IThD2 �unpublished�.

�19� T. Holstein, Ann. Phys. 8, 343 �1959�.
�20� M. Esposito and P. Gaspard, Phys. Rev. B 71, 214302 �2005�.
�21� Y. Dubi and M. D. Ventra, Phys. Rev. E 79, 042101 �2009�.
�22� P. W. Anderson, Phys. Rev. 109, 1492 �1958�.
�23� S. Marianer and J. M. Deutsch, Phys. Rev. B 31, 7478 �1985�.
�24� K. Kitahara and J. Haus, Z. Physik B 32, 419 �1979�.
�25� G. D. Mahan, Many-Particle Physics �Plenum, New York,

1981�.
�26� O. Firstenberg et al., Phys. Rev. A 76, 013818 �2007�.
�27� C. Slichter, Principles of Magnetic Resonance �Springer, Ber-

lin, 1990�.
�28� Y.-C. Cheng and R. J. Silbey, J. Chem. Phys. 128, 114713

�2008�.
�29� W. Warta and N. Karl, Phys. Rev. B 32, 1172 �1985�.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Wτ

D
/ τ

Theory
Simulation

Slope −2

Slope −1

FIG. 3. �Color online� A fit of the theoretical results to numeri-
cal calculations. The diffusion constant was found numerically, for
correlation times �=0.01 �triangles�, �=0.1 �squares�, and �=1
�circles� and noise magnitudes ranging from W=2 to W=20. Each
point in the graph is an average over 50 realizations. As expected
theoretically, there is a crossover from a regime with slope −2 �i.e.,
1 /x2 dependence� to a regime with slope −1 �1 /x dependence�. The
different curves overlap at points with the same value of W�. The
form of the crossover is given by Eq. �16� integrated numerically
for the intermediate regimes. No fitting parameters are used in the
comparison.
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